Orthopaedic Applications of Ferromagnetic Shape
نویسندگان
چکیده
Ferromagnetic shape memory alloys (FSMAs) are a new class of magnetic field-actuated active materials with no current commercial applications. By applying a magnetic field of around 0.4 T, they can exert a stress of approximately 1.5 MPa, exhibiting a strain of up to 6%. This thesis evaluates their technical and commercial feasibility in orthopaedic applications. Remote actuation is a key advantage FSMAs have over current implant materials. Also, the human body temperature is constant, providing a stable environment for FSMAs to operate. A number of potential orthopaedic applications are proposed and evaluated. Out of these, the most prominent application is the spinal traction device. It is a temporary implantable device, intended to perform internal spinal traction. A design has been proposed, with suggestions of suitable materials for its various components and appropriate device dimensions. Preliminary market and cost analyses have been conducted. This orthopaedic technology is currently in its infant stage. To commercialize this device, more trials are needed. Thesis Supervisor: Samuel M. Allen Title: POSCO Professor of Physical Metallurgy
منابع مشابه
Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملSpatial detection of ferromagnetic wires using GMR sensor and based on shape induced anisotropy
The purpose of this paper is to introduce a new technique for row spacing measurement in a wire array using giant magnetoresistive (GMR) sensor. The self-rectifying property of the GMR-based probes leads to accurately detection of the magnetic field fluctuations caused by surface-breaking cracks in conductive materials, shape-induced magnetic anisotropy, etc. The ability to manufacture probes h...
متن کاملTesting system for ferromagnetic shape memory microactuators.
Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of...
متن کاملShape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modi...
متن کامل